Disease reservoirs threaten the recently rediscovered Podocarpus Stubfoot Toad (Atelopus podocarpus)

<table>
<thead>
<tr>
<th>Title</th>
<th>Disease reservoirs threaten the recently rediscovered Podocarpus Stubfoot Toad (Atelopus podocarpus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Jervis, P, Karlsdottir, B, Jehle, R, Almeida-Reinoso, D, Almeida-Reinoso, F, Ron, S, Fisher, MC and Merino-Viteri, A</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/57506/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2020</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Disease reservoirs threaten the recently rediscovered Podocarpus Stubfoot Toad (*Atelopus podocarpus*)

1,2,3,4Phillip Jervis, 5Berglind Karlsdóttir, 6Robert Jehle, 3,7Diego Almeida-Reinoso, 3,8Freddy Almeida-Reinoso, 2Matthew C. Fisher, and 3,8,*Andrés Merino-Viteri

Abstract.—The Andes have experienced an unprecedented wave of amphibian declines and extinctions that are linked to a combination of habitat reduction and the spread of the fungal pathogen, *Batrachochytrium dendrobatidis* (*Bd*). In the present study, a range of high-altitude habitats in Southern Ecuador were surveyed for the presence of *Bd*. With a particular focus on Yacuri National Park, infection data are presented from across the resident amphibian community. This community contains a once putatively extinct species which was rediscovered in 2016, the Podocarpus Stubfoot Toad (*Atelopus podocarpus*). Across species, local *Bd* prevalence was 73% in tadpoles (*n* = 41 individuals from three species) and 14% in adults (*n* = 43 individuals from 14 species). Strikingly, 93% (14/15) of tested tadpoles of the recently described local endemic, *Gastrotheca* *yacuri*, were infected with a high pathogen load, suggesting that this species likely acts as a reservoir of infection in Yacuri. These findings show that the threat of disease for *A. podocarpus* still exists, and that this species requires urgent action to ensure its survival.

Keywords. Amphibian, Anura, chytrid, conservation, Ecuador, emerging infectious disease, *Gastrotheca*

Introduction

Amphibians have experienced marked population declines and extinctions across all continents where they occur, and represent a particularly prominent example of the current biodiversity crisis (Hoffmann et al. 2010; Wake and Vredenburg 2008). A main driver for these declines is chytridiomycosis, an infectious disease caused by the fungal pathogen, *Batrachochytrium dendrobatidis* (hereafter *Bd*), which may act synergistically with other

Correspondence. *armerino@puce.edu.ec*
Podocarpus Stubfoot Toad, *Atelopus podocarpus*, was rediscovered from museum specimens after the last known individual died shortly after capture in 1994 (Loetters et al. 2011). In line with many other Ecuadorian *Atelopus* species, anecdotal evidence indicates that before the onset of catastrophic declines, *A. podocarpus* was relatively common within its range (Ron et al. 2003). In 2016, three individuals of *A. podocarpus* were rediscovered along a single stream in Yacuri National Park by a field team from the Museum of Zoology (QCAZ), of the Pontificia Universidad Católica del Ecuador (e.g., Fig. 1). However, searches in the surrounding habitat were unsuccessful in finding additional individuals or new populations. The specific aims of the present study are to: (1) survey a range of high-altitude sites in southern Ecuador for *Bd* presence and prevalence in both tadpoles and adults of all encountered species; (2) revisit the last known site of *A. podocarpus* in Yacuri National Park, to survey for additional individuals of this species and to establish the *Bd* infection status of the local amphibian community; and (3) identify potential *Bd* reservoir species which maintain local infection.

Methods

Fieldwork was conducted at six sites during 13–21 June 2018, which is in the dry season. Locations were selected at a range of elevations encompassing habitats of previous *Atelopus* occurrences, covering an elevation range of 1,014–3,423 m from eastern foothill forest (Zamora) and eastern montane forest (San Francisco and Loja) to Paramo/Subparamo (Urdaneta, Madrigal del Podocarpus Reserve and Yacuri National Park, see Fig. 2). The ecology of *A. podocarpus* is unknown. However,
the closely related *A. ignescens* has been observed breeding in December–January (Peters 1973), so it is likely that sampling occurred outside the breeding season of *A. podocarpus*.

All individuals in this study were captured by hand or with a small fishing net, swabbed with a sterile cotton swab (Medical Wire 100), and immediately released at the site of capture. Tadpoles had their mouthparts swabbed (only the mouthparts of tadpoles can be infected by *Bd*, Hyatt et al. 2007). Post-metamorphic individuals were swabbed by taking five strokes at the center of the underside, on each flank, the inside of the legs, and the bottom of each of the rear feet. Animals contaminated with soil were washed before swabbing to remove debris, using water purified through mechanical, active carbon, and UV filtration. Swabs were stored in an icebox in the field when possible, until they were returned to the lab and refrigerated below 4 °C until analysis. The coordinates and elevation of each sampled animal was georeferenced using a Garmin GPS. All equipment used in environmental sampling or for handling animals was sterilized in 5% chlorhexidine solution between sites to prevent contamination of potentially disease-naïve sites. Each individual was contained in a new plastic bag and handled with a fresh pair of nitrile gloves to prevent cross-infection. Gloves and bags were disposed of following return from the field.

DNA extractions of swabs were performed using Prep-Man extraction kits (Hyatt et al. 2007), followed by a qPCR-based standard protocol for the quantification of *Bd* prevalence and infection burden (Boyle et al. 2004). Standard curves were generated using 0.1, 1, 10, and 100 *Bd* zoospore standards of BdGPL isolate IA042. To reduce PCR inhibition, samples were diluted 1:10 and the infection burden was multiplied by 10. Infection burden was defined as the number of zoospore genomic equivalents (GE) per swab following Clare et al. (2016). The sample was considered *Bd* positive if both replicates amplified above 0.1 GE.

Differences of infection intensities (GE) between sites were tested using ANOVA with a post-hoc pair-wise Tukey HSD test using R version 3.6.2 (R Development Core Team 2013).

Results

A total of 41 pre-metamorphic and 43 post-metamorphic individuals representing 18 species from seven sites were swabbed (Table 1). A total of 36 *Bd* positive animals were recorded (30 tadpoles of *Gastrotheca* sp. and six adults from four species in five genera), equating to a total infection rate of 43% (73% for tadpoles and 14% for adults). *Bd* was detected at five of the six sampling sites. A single male *A. podocarpus* was found along the same stream as the previous expedition at Yacuri National Park. However, further searches along 3.5 km of the
streams surrounding the lake system were unsuccessful at locating any more individuals. Tadpoles of *G. yacuri*, a recently described, locally endemic species (Carvajal-Endara et al. 2019), were characterized by particularly high *Bd* prevalence (93%, $n = 15$) and infection loads. For *Gastrotheca* species in general, Yacuri had a significantly higher infection burden ($P < 0.05$) than Madrigal and Urdaneta, the other two sites for which tadpoles were analyzed (Fig. 3).

Discussion

This survey found that *Bd* is widespread in Southern Ecuador, but unevenly distributed between species and sites. The lower prevalence of *Bd* amongst adult amphibians would correspond well with an enzootic disease system (Catenazzi et al. 2017), although the sample size here does not allow unambiguous discrimination between sampling biases related to taxon and life stage. Moreover, an enzootic state does not necessarily equate to stable populations, and further declines are also possible when populations have been affected by *Bd* over significant periods of time (Longo and Burrowes 2010). *Gastrotheca* sp. tadpoles were particularly highly infected by *Bd* (Table 1), suggesting that this genus acts as a reservoir for local disease presence. *Gastrotheca* is a widely-distributed and locally common genus throughout the Andes which can often

Table 1. *Bd* prevalence and mean infection burden by species at each site. The *Atelopus podocarpus* swab was lost in transit from the field site. GE indicates the number of zoospore genomic equivalents as a measure of infection intensity.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>Life stage</th>
<th>Site</th>
<th>Bd positives</th>
<th>Prevalence</th>
<th>GE (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boana fasciata</td>
<td>8</td>
<td>Adult</td>
<td>Zamora</td>
<td>1</td>
<td>13% (1–53%)</td>
<td>3.17</td>
</tr>
<tr>
<td>Dendropsophus rhodopeplus</td>
<td>6</td>
<td>Adult</td>
<td>Zamora</td>
<td>2</td>
<td>33% (4–78%)</td>
<td>2.52</td>
</tr>
<tr>
<td>Dendropsophus sarayacuensis</td>
<td>2</td>
<td>Adult</td>
<td>Zamora</td>
<td>2</td>
<td>100% (16–100%)</td>
<td>1.87</td>
</tr>
<tr>
<td>Gastrotheca elicioi</td>
<td>9</td>
<td>Adult</td>
<td>Loja</td>
<td>0</td>
<td>0 (0–34%)</td>
<td>0</td>
</tr>
<tr>
<td>Gastrotheca pseustes</td>
<td>10</td>
<td>Tadpole</td>
<td>Urdaneta</td>
<td>6</td>
<td>60% (26–88%)</td>
<td>17.71</td>
</tr>
<tr>
<td>Gastrotheca aff. pseustes</td>
<td>16</td>
<td>Tadpole</td>
<td>Madrigal</td>
<td>10</td>
<td>63% (35–85%)</td>
<td>3.08</td>
</tr>
<tr>
<td>Gastrotheca yacuri</td>
<td>15</td>
<td>Tadpole</td>
<td>Yacuri</td>
<td>14</td>
<td>93% (68–100%)</td>
<td>465.00</td>
</tr>
<tr>
<td>Pristimantis atratus</td>
<td>1</td>
<td>Adult</td>
<td>San Francisco</td>
<td>0</td>
<td>0 (0–97.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis cf. cajamarcensis</td>
<td>1</td>
<td>Adult</td>
<td>Madrigal</td>
<td>0</td>
<td>0 (0–97.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis (Huiundomantis) sp.</td>
<td>1</td>
<td>Adult</td>
<td>Madrigal</td>
<td>0</td>
<td>0 (0–97.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis lymani</td>
<td>1</td>
<td>Adult</td>
<td>San Francisco</td>
<td>1</td>
<td>100% (2.5–100%)</td>
<td>6.22</td>
</tr>
<tr>
<td>Pristimantis multicolor</td>
<td>4</td>
<td>Adult</td>
<td>Yacuri</td>
<td>0</td>
<td>0 (0–60%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis orestes</td>
<td>1</td>
<td>Adult</td>
<td>Urdaneta</td>
<td>0</td>
<td>0 (0–97.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis sp. 1</td>
<td>2</td>
<td>Adult</td>
<td>Zamora</td>
<td>0</td>
<td>0 (0–84%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis sp. 2</td>
<td>1</td>
<td>Adult</td>
<td>San Francisco</td>
<td>0</td>
<td>0 (0–97.5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pristimantis tikik</td>
<td>4</td>
<td>Adult</td>
<td>Urdaneta</td>
<td>0</td>
<td>0 (0–60%)</td>
<td>0</td>
</tr>
<tr>
<td>Rhinella marina</td>
<td>2</td>
<td>Adult</td>
<td>Zamora</td>
<td>0</td>
<td>0 (0–84%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of infection burdens in *Gastrotheca* tadpoles between three of the six sites. The asterisks denote significant differences. The boxplot was produced in ggplot 2 (Ginestet 2011).
tolerate human modified landscapes. Larval anurans, including Gastrotheca tadpoles, are generally tolerant to Bd infection (Grogan et al. 2018) as their lack of keratinized skin prevents disease progression until metamorphosis.

As a hypothesis, this situation allows for the proliferation of the pathogen in the habitats under investigation, following the declines and extinctions of more susceptible potential hosts such as Atelopus sp. (Haydon et al. 2002; La Marca et al. 2005; Woodhams et al. 2006). The life history of tadpole-producing Gastrotheca species in high-elevation habitats could allow for the continuous persistence of Bd in breeding pools. Mating takes place on land, and eggs hatch into larvae in the pouch of females which deposit advanced tadpoles into the breeding pool. Many Gastrotheca species do not have fixed reproductive periods and will breed whenever conditions are favorable (Del Pino 1989). Therefore, the combination of slow development and overlapping generations of tadpoles in permanent pools at high elevations creates an ecological system which has previously been characterized by high infection prevalence combined with Bd transmissions to tadpoles of other species (e.g., Alytes obstetricans: Bates et al. 2018 and Rana muscosa: Clare et al. 2016; Rachowicz and Briggs 2007). Although this study represents the first detection of Bd in G. yacuri, tadpoles of the closely related G. riobambae have previously been shown to be capable of maintaining infection across multiple cohorts in a breeding pond monitored over a 9-month period (S. Ron, unpub. data). Future research is needed to determine the potential for Gastrotheca species to act as Bd reservoirs in high-altitude habitats over an extended monitoring period.

Rediscoveries of Atelopus sp. in Bd positive sites are not unusual (Perez et al. 2014; Tapia et al. 2017; Lampo et al. 2011, 2017). However, many of these sites are at lower elevations than Yacuri and possess more diverse amphibian communities, leading to a wider array of options for cross-species infection dynamics. Being home to a smaller number of species, Yacuri National Park could thus be used as an accessible model system to infer the processes which allow for the coexistence of susceptible amphibians within a Bd positive community. An extremely high infection burden in breeding pools was discovered within 50 m of the locality where the four remaining A. podocarpus individuals were found (one individual during this study in 2018, and three individuals discovered in 2016). This suggests that A. podocarpus is still perennially exposed to Bd and therefore at risk of chytridiomycosis, although infection data are unavailable due to the loss of the skin swab from the individual sampled on the second expedition. The high-prevalence, high-intensity infection pattern found here is often seen in epizootic systems, and quantitative population data are required to assess the impact of Bd on both G. yacuri and A. podocarpus.

A high prevalence of Bd in Yacuri could inhibit the proliferation of relic populations of A. podocarpus, and is a major cause for concern for future conservation initiatives. For possible future ex-situ breeding, investigations into the availability of founder individuals are seen as a priority for the species (Conservation Needs Assessment 2012). However, more information is needed on the infection status and size of the population and, until such data are available, we do not recommend the collection of individuals for ex-situ conservation. All recent discoveries of this species have been in Yacuri National Park, and all visitors and guides must register in the park office. Hence, dissemination for a citizen-science monitoring project would be relatively straightforward. We also recommend further investigation into the possibilities of improving the habitat for this species, for example through the removal of introduced trout (Martín-Torrijos et al. 2016; Mouillet et al. 2018).

Acknowledgements.—This research was primarily supported by Mohammed bin Zayed Species Conservation Fund project number 182518074. Field work was partially funded by “Balsa de los Sapos” Amphibian Conservation Initiative of the Pontificia Universidad Católica del Ecuador (PUCE) through Project QINV0132-INVS9010100 research fund granted to AMV by Dirección General Académica, PUCE. MCF is a fellow of the Canadian CIFAR ‘Fungal Kingdom’ program and is funded by the UK NERC grant NE/S000844/1 and MRC grant MR/R015600/1. Samples were obtained under Framework Contract of Access to Genetic Resources Nro. MAE-DNB-CM-2015–0039, and exported to the United Kingdom under material transfer agreement 96-2018-EXP-CM-MBI-DNB/MA granted by the Ministry of Environment of Ecuador to Dr. María Eugenia Ordoñez, who we thank for her support. For field assistance on the initial expedition to Yacuri National Park, we thank Leonardo Cedeño, Darwin Núñez, Kunam Nusirquia, and Fernando Ayala. Finally, we would like to thank Dr. Paul Szekely (Universidad Particular Técnica de Loja) for sharing field sites and field assistance, and for confirming the identifications of species sampled.

Literature Cited

Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. 2004. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases

Amphib. Reptile Conserv. 2020 | Volume 14 | Number 2 | e243

Jervis et al.
of Aquatic Organisms 60(2): 141–148.

Phillip Jervis is currently a Ph.D. candidate at the Zoological Society of London (ZSL) Institute of Zoology and Imperial College London. His current research centers around using the chemical ecology of model systems in Panama and the Pyrenees to investigate discrepancies in the resilience of *Bd* susceptible amphibians. Phillip holds a Master’s degree in Tropical Forest Ecology from Imperial College London and a Master’s degree in Chemistry for Drug Discovery from the University of Bath (United Kingdom).

Berglind Karlsdóttir is currently a Social Scientist with the Forestry Commission. At the time of this study, Berglind was an intern with Durrell Wildlife Conservation Trust's Saving Amphibians from Extinction team, where she produced a set of *General Guidelines for Managers and Supporters of Amphibian Captive Breeding Programmes*, in collaboration with the Amphibian Ark (https://www.amphibianark.org/). This program was based on her Master’s thesis in Conservation Science at Imperial College London, entitled: *Barriers to Amphibian Captive Breeding Programmes in Latin America, Africa, and Asia*. Berglind also holds a Bachelor’s degree in Wildlife Conservation from the University of the West of England (Bristol, United Kingdom).

Robert Jehle had a childhood interest in amphibians and their habitats, and feels very fortunate that he could translate that passion into a professional career. Robert is currently a Reader in Population Biology at the University of Salford (United Kingdom), where he teaches in a range of undergraduate and postgraduate programs in Zoology and Wildlife Conservation. His main research area revolves around the ecology, evolution, and behavior of amphibians at the level of populations, often combining evidence from genetic markers with life-history inferences. Robert is a former (2009–2015) Editor of *Herpetological Journal*, and a current (2009–date) Associate Editor of the journal *Animal Conservation*.

Diego Almeida-Reinoso has a doctorate in Biology from Universidad Central del Ecuador. Diego is currently the manager of insect breeding at Farm SARGRILLO and director of the *ex-situ* conservation program for two endangered species of Ecuadorian amphibians, the Tiger Treefrog (*Hyloscirtus tigrinus*) and Stella de la Torre’s Rocket Frog (*Hyloclalus delatorreae*).
Freddy Almeida-Reinoso has a degree in Biological Sciences from Universidad Central del Ecuador. Most of his professional career has involved the management, conservation, and research of ex-situ amphibian populations. Freddy is currently working as Administrator of the Amphibian Conservation Initiative Balsa de los Sapos (Life-raft for frogs) at Pontificia Universidad Católica del Ecuador.

Santiago Ron is an Ecuadorian evolutionary biologist, principal professor, and Curator of Amphibians at the Museum of Zoology (QCAZ), Pontificia Universidad Católica del Ecuador (PUCE). Santiago has a Ph.D. on Evolution, Ecology, and Behavior from the University of Texas at Austin and an M.A. degree in Systematics and Ecology from the University of Kansas (Lawrence, Kansas, USA). His research focuses on the evolution and diversity of the amphibians of the Neotropical Region, with special attention to Ecuador. Santiago leads the development of BIOWEB Ecuador, an on-line platform for managing and publishing information about the Ecuadorian biodiversity. He is member of The World Academy of Sciences (TWAS) and founding member of the Ecuadorian Academy of Sciences.

Matthew Fisher in a fungal biologist working at Imperial College London. His approach melds genomic epidemiology, modelling, macroecological analysis, and experimentation to understand the biology underpinning the global emergence of fungal diseases. Matthew leads the ‘Fungal Pathogens’ theme in the MRC Centre for Global Infectious Disease Analysis (United Kingdom) and is a fellow of the Canadian CIFAR program.

Andres Merino-Viteri is an Ecuadorian herpetologist with a Ph.D. in Tropical Ecology from James Cook University in Australia. Andres is currently working as a lecturer and researcher at the Biological Sciences School of the Pontificia Universidad Católica del Ecuador (PUCE) in Quito, Ecuador. He has been in charge of the Amphibian Conservation Initiative Balsa de los Sapos (Life-raft for frogs) at PUCE since 2011. Andres also focuses his research on the gathering of ecophysiological data for different species of Ecuadorian amphibians in order to assess their vulnerability to different climate change scenarios.